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J. Phys. A: Gen. Phys., Vol. 5, June 1972. Printed in Great Britain 

Lagrangian studies of plasma wave interactions I 

T J M BOYD and J G TURNER 
Department of Applied Mathematics, University of Wales, UCNW, Bangor, UK 

MS received 21 October 1971 

Abstract. A study of wave-wave interactions in plasmas is made using a lagrangian formu- 
lation developed by Low. Coupled mode equations are derived. The method offers distinct 
advantages over the conventional approach starting from the Vlasov-Maxwell equations. 
Two examples of the lagrangian method are considered: (i) the nonlinear interaction of 
transverse waves in a warm field-free plasma to produce plasma oscillations and (ii) the 
interaction of three electromagnetic waves in a cold magnetized plasma. Its application 
to waves in warm magnetized plasmas and to explosive instabilities is considered in part 11. 

1. Introduction 

Studies of nonlinear wave interactions in plasmas are basic to an understanding of weak 
turbulence and are currently in the forefront of plasma research as laboratory studies 
are extended to nonlinear phenomena. At the outset it is important to understand that 
the label nonlinear is used to denote only weak departures from linear theory. Perturba- 
tions in the system are still expressed in terms of a set of linear modes but a weak inter- 
action between modes is admitted. Thus in the linear combination of normal modes, 
coefficients are now slowly varying functions of time (or space) so that in the evolution of 
the system the state after some time is in general distinct from that predicted by linear 
theory. This theory-often referred to as weak turbulence theory-has as a requirement 
for its validity that the ratio of energy in the wave spectrum to the total energy in the 
plasma should be small. If this is not the case we are faced with strong plasma turbulence 
for which no adequate theory exists at present. 

Nonlinear wave interactions in plasmas may be subdivided for convenience into 
wave-wave interactions and wave-particle interactions, of which Landau damping is a 
familiar example in the linear regime. We shall confine our attention to wave-wave 
interactions. Consider three plasma waves with frequencies wj satisfying dispersion 
relations oj = w,(kj), j = 1,2,3. Under conditions of resonance o3 = w1 k w 2 ,  
k, = k, +k, wave coupling may play an important role in the plasma. In this interaction 
total energy and momentum in the wave system are conserved. Our separation of wave- 
wave interactions from nonlinear wave-particle interactions is of course arbitrary ; in 
many turbulent plasmas they are in competition. However it is possible to devise 
experimental situations in which one or the other is dominant, at any rate within limited 
regimes of plasma parameters. 

Studies of wave-wave interactions abound in the literature. The usual approach has 
followed the well beaten path of a perturbation treatment of the Vlasov-Maxwell set of 
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equations. For the three wave interaction it leads-after rather tedious calculations---~- 
to a set of coupled mode equations 

in which A^ j  is a wave amplitude, ugj  is the group velocity of wave j, and x is the coupling 
coefficient, asterisks denoting complex conjugates. 

From the coupled mode equations one finds 

w;lD,r, = wi1D2e2 = -o;~D,c, = ixA1A221$ +complex conjugate 

(2 ,  
with Dj = d/dt+v,, . V, 6, = kjkT. These are the Manley-Rowe relations expressing 
the conservation of wave action (Sturrock 1960). 

There is however an alternative to such a procedure based on a study of the Lagrangian 
for the plasma, first formulated by Low (1958). Low applied the lagrangian formalism 
to study plasma oscillations and hydromagnetic waves in linear theory. Apart from some 
work by Suramlishvili (1964,1965 and 1967) there appears to have been little realization 
of the benefits of a lagrangian approach in studying nonlinear problems in plasma 
physics until recently (Galloway and Crawford 1970). 

However a lagrangian approach has been examined. independently in fluid mechanics 
by Whitham (1965) who introduced the idea of an averaged Lagrangian in a general 
approach to linear and nonlinear dispersive waves. Bretherton and Garrett (1968) used 
the concept of an averaged Lagrangian to demonstrate the conservation of wave action 
for a wide class of conservative systems in fluid dynamics. ~Dougherty (1970) has gener- 
alized their work in a relativistic treatment and has extended it to include the nonlinear 
interaction between waves. In particular he considers three-wave interactions and 
derives a conservation law which is the general form taken by the Manley-Rowe relations 
(cf (2)). 

A specific application of the lagrangian approach has been made by Simmons (1969) 
to derive coupled-mode equations describing weak resonant wave interactions of 
capillary-gravity waves in an inviscid fluid. In this paper and its sequel we wish to 
consider some wave-wave interactions of interest in plasma physics from the lagrangian 
standpoint. 

The procedure adopted in the lagrangian approach is the following. The plasma is 
described in terms of Low’s Lagrangian which is then developed in an expansion scheme. 
This describes in its various orders the equilibrium state of the plasma, the linear wave 
spectrum, three-wave coupling processes, four-wave coupling etc. The familiar Bogo- 
liubov-Krylov multiple scale expansion is then used on the independent variables. In 
the case of two spatial and two time scales one (fast, x, t )  is characteristic of the wavenum- 
bers and frequencies of the normal modes of the system while the other (slow, E X ,  r t )  
characterizes the space-time variation of the amplitudes of the coupled modes. This 
procedure leads to action integrals for the unperturbed plasma on the one hand and for 
the waves and their interactions on the other. Use of a space-time averaged Lagrangian 
together with corresponding averaged energy densities and fluxes then gives general 
expressions for the coupled mode equations together with the coupling coefficients. 
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The averaging procedure is discussed in 0 2 where the general theory is presented. 
The application of the method to two specific examples of three-wave interactions is 
considered in 0 3, namely the conversion of electromagnetic waves into longitudinal 
plasma oscillations in a warm, field-free plasma and the interaction of three transverse 
waves in a cold magnetized plasma. The lagrangian approach to wave-wave interac- 
tions in plasmas is discussed in 0 4. 

2. Theory 

Consider a plasma described by the Lagrangian 

where {qi(x,  U, t ) ] ,  i = 1,2,. . . p ,  is the set of generalized variables and 4p is the lagrangian 
density. In 0 1 we limited the present discussion to wave-wave interactions only; in 
particular we shall be interested in those in which total wave energy and momentum are 
conserved, that is, dip shows no explicit time dependence. In this problem, the generalized 
variables are the position r of the particle together with the electrostatic and electro- 
magnetic potentials 4 and A respectively. For brevity, we shall denote the functional 
dependence of 9 given in (3) by 9 ( q i ,  x, U). The equations of motion for the plasma 
follow from Hamilton's principle, that is S = JJJ 4p dx du dt is stationary and are 
given by the Euler-Lagrange equations 

( i  = 1,2,. . . p ) ,  where a, E d/at and similarly for a,, a,. The symbol 6 represents partial 
differentiation in the sense that x, U, t are independent variables, but at the same time, the 
dependence of dip on x, U, t through axqi, auqi, atqi is also taken into account. Define a 
generalized energy density 

and corresponding energy fluxes in phase-space P,B'  

where P, 9' denote space and velocity components respectively. Write 

qi = q; + q i  (8) 
where the qb represent the equilibrium state and the v i  denote the total perturbation of 
this state due to the waves and their interactions. 

The small parameter E denotes the ratio of the time (length) scales, contained in the 
prescription of Krylov and Bogoliubov (1949) ; the slow scale characterizes the variation 
in time (space) of the amplitudes of the coupled modes while the fast is associated with the 
natural frequencies (wavenumbers) of the modes. It follows from Hamilton's principle 
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under the change of variable (8) that the { $(x, U, t)} may now be regarded as the independ- 
ent generalized variables with the {46(x,u))  regarded as known. The equations of 
motion of the {vi) are then determined from (4) with q' replaced by vi, and in direct 
analogy with (5)-(7), we may define the energy density .%(vi, x, U) and the flux vectors 
Ps(vi, x,u) ,  PV(qi, x, U). On substituting (8) together with its derivatives in (3), a formal 
expansion of 9 may be made in powers of the perturbation 

(9) 

where 9, is a homogeneous expression of degree n in the } I i ,  ?,vi, Sxrl i ,  2~'. Corresponding 
expansions for Z Ps and 9'' may also be written in powers of the perturbation vi. Since 
Po is a function of the equilibrium quantities qb only, it describes the equilibrium state. 
PI is of first order in the { v i }  and their derivatives and so has no effect on the equation of 
motion for {vi}. In fact Low has shown that L ,  vanishes in general as is apparent in 
0 2.1 from the fact that fo(x, U) is a solution of the time independent Vlasov equation. The 
variation of with respect to the v i  yields the linear Vlasov-Maxwell equations describ- 
ing wave propagation in the plasma. The physics of wave interactions is contained in 
third and higher order terms ; in order to describe three-wave interactions, the perturba- 
tion series is truncated after S3. In the linear regime for some parameter U,,  of the nth 
wave 

(10) 

where 8, is constant in time and space. To describe wave coupling we suppose that 
solutions of the nonlinear equation have the form (10) with 8, now regarded as a slowly 
varying function of x and t .  

The perturbation vi  is now separated into its individual wave components, so that 
for the three-wave interactions of interest 

9 = Y0+€9, +29* +€3Y3+ . . . 

U ,  = Re{ 8, exp i(k, . x- q t ) )  

v i  = v'l +yI;+v; ( 1 1 )  

Y ( n )  = 2 vi(x, U, t )  + &(x. U)+ 1 vk(x, U, t )  , x, U 

with each q l  (n  = 1,2,3) given by (10). One now defines a Lagrangianjbr euch wuce 

(11) ( ' ( n i t n  1 1  
which is now time dependent, that is 

Y ( n )  E -4p(yk(x, U, r ) ,  x, U, t ) .  

In these individual wave Lagrangians we treat the (qh(x, U, t ) )  as the set of generalized 
variables, whilst all other wave variables qk(x, U, t) ni # n, qb(x, U) are regarded as explicit 
functions of x, U, t which are known. Thus 2/2t acting on Y ( n )  will operate only on the 

We now define the corresponding time-dependent energy density and flux vectors for 
i V k i J .  
each wave in analogy with (5H7) 
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The coupled-mode equations then follow by considering the time rate of change of the 
time-dependent energy per unit volume 

H(n) = X(n)du 5 
with X(n)  given by (13). The time rate of change in this case is 

Using (1 3) and eliminating (6/6t)(a Y/a(a,qf)) via the Euler-Lagrange equations leads to 

We now make use of multiple time and length scales in order to describe weak nonlinear 
coupling. The amplitudes of the interacting waves are assumed to be functions of space 
and time which vary slowly compared with the variation of equilibrium quantities so 
that one may introduce a space-time averaging procedure. This averaging, denoted by 
a bar, is one taken over intervals of space and periods of time which are long compared 
with periods of oscillation of the uncoupled linear waves, k; ', con- ', but short compared 
with intervals and periods over which the amplitudes of the interacting waves vary 
appreciably. The effect of the averaging is to separate synchronous terms, that is, those 
which have no net phase dependence, from those with nonzero phase which vanish. The 
space-time averaged quantities are then all slowly varying functions of x and t. It is the 
application of this space-time averaging to (17) which leads directly to the coupled-mode 
equations and coupling coefficient, that is 

-- 
~ ~ d u + ~ $ . P ' ( n ) d u  = - s - ?do. 

The third term in (17) is not displayed since (6 /6u) .  A(x ,  t )  = 0. The coupled-mode 
equations then follow from (18) where we write 9 ( n )  = Z2(n)+Y3(n). We indicate how 
the various terms in (18) are evaluated by giving a detailed account of the calculation for 
J (aY(n)/at) du. Consider (18) for wave 1 ; since p2 is of the form 

92 = 1 ajlqjqr 
jJ 

from (10H12), we have 

ajl[{(fi{ eial+fiT e-'"')+(fii(x,u, t)eia2 

+ fi.';(x, U, t )  e - "2) + (fi<(x, U, t) ei'3 + fi';(x, U, t )  e- 9) 
x ((4; eial + f i y  e-"1)+(fi\(x, U, t )  eiaz 

+q;(x, U, t)e-ia2)+(fi\(x, U, t )  eia3 

+ q!(x, U, t )  e- i'3)}] du (19) 
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where a, = k, . x - cont. Performing the space-time average gives 

+ ( 9 k  0,  t)fl;(x, U, t )  + cc)} du 

where cc denotes complex conjugates. Remembering that a/at operates only on waves 2 
and 3 

where the generic wave Lagrangian 2 = Lf2(q:, x, U). Similarly 

9 3  = 1 a j l m q J q ' q m  
j , l m  

from which we find on space-time averaging 

+si(., U, t )  eia2(q: eia1)lj7*(x, U, t )  e- i013 + cc 

+ q{(x, U, t )  e- ia3fj:(x, U, t) eia2(91; eial) + cc} du 1 
where the term in wave 1 has been bracketed to show that it is not to be differentiated when 
the differentiation with respect to time is carried out. Then 

ujlm(fli$jl7* + 9:4{97* +9'3i9{> + cc dv. 1 i 1 (,E S&i..odu = - ( w 3 - w 2 )  8 

(20) 

From the synchronism condition cog - o2 = wl, we can write (20) as 

where E,, denotes the wave coupling energy. A similar analysis shows that to lowest 
order in the nonlinearity 

where E, = j" Z2(qh, x, U) du. Finally 
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where PS, 
results in the set of equations 

J B ~ ( q ~ ,  x, U) du. Performing the same analysis on (18) with waves 2 and 3 

( n  = 1,2,3) 

where c1 = c2 = 1 and c3 = - 1. 
Stix (1962) and Allis et a1 (1963) have shown that the group velocity U, is equal to the 

velocity of transport of energy, where this quantity is defined as the ratio of the total 
space-time averaged energy flux to the total space-time averaged density, that is 

p," v,, = -. 
E" 

Here C, denotes the sum of the magnetic and electrostatic energy densities together with 
that part of the charged particle kinetic energy associated with the coherent wave 
motion, while P: denotes the sum of electromagnetic energy flux and that deriving from 
the coherent wave motion. 

This identification enables (22) to be written 

and since C, E,(x, t ) ,  then 

Using D, = (a/&) + U,, . V, (23) may be written 

c,o,- { Dncn + c,(V U,,)} = - ewe. (2411 
For the interactions under discussion, the group velocity is spatially independent so that 
(24) becomes 

c,w,-~D,,c,, = -ewc. (25) 
We may identify C/O,, with the action of wave n and (25) can be written 

w T ~ D , c ,  = o Y ~ D ~ c ,  = - o ; ~ D ~ Q ~ .  

These are the action-transfer relations first discussed by Sturrock (1960) in the context of 
plasma physics. It may be seen that the rates of transfer of action between waves partici- 
pating in an interaction are in the ratio 1 : k 1. Further, writing (25) in the form 

(26) w ; 1 D l ~ l + ~ ; 1 D 3 c 3  = 0 = w;1D2C2+W;1D3C3 

and defining or, = r o ,  +so, so that ol0 = ol, ool = w 2 ,  oll = o3 with similar 
definitions for D,, and er,, (26) becomes 

t When wave coupling is ignored, (24) is a particular case of the general result cn{Dfl(cB/un) + (V . um)cJwn} = 0 
for constant 0,. This last equation is the principal result of a paper by Bretherton and Garrett (1968) and 
states that in a time dependent, nonuniformly moving medium, the total wave action c n / u ,  is conserved along 
a ray. A ray is the path traced in space-time by an observer moving with the local value of us,. 



888 T J M Boyd and J G Turner 

which are the Manley-Rowe relations originally derived from the consideration of 
energy transfer within nonlinear elements of electrical networks (Penfield 1960). 

Finally, from LZ2 we derive the linear equations of motion which enable us to express 
the qi in terms of one wave parameter, say a:, that is q; = Mia:. With this substitution, we 
find 

= rnbnd; Pi = A,d,ii,* E,c = irw,d,d2d; + cc. (27a, b, C) 

Then for wave 1, (24) becomes 

c -r ii d* +(U,, . V ) r l B l a T  = -io,~w,d,d,d:+cc. 
2 t ' l '  

Taking r, > 0 and defining A,  = ri 'a,,, this equation becomes 

A*A*A +cc ATDIAl +cc = iw, wc 

(r1r2rp 
Comparison of (28) with (1) shows that we may drop the complex conjugate from each 
side of (28) and identify the wave coupling coefficient 

Equation (28) then becomes identical with (I), giving the coupled-mode equations. 

2.1. Lagrangian for a warm plasma 

We conclude this section with a statement of the main results from the paper of Low 
concerning the warm plasma Lagrangian. The lagrangian density for a hot electron 
plasma in a magnetic field Bo is given by 

where -e(e > 0) and m are the charge and mass of an electron, f, is the equilibrium 
distribution function and ~ ( u )  is an arbitrary function of velocity such that J ~ ( u )  du = 1. 
The operator 

i: 
cl - at 

D - - + u . V - U X R .  (L) = D-uxR. [g] 
where R = eB,/mc. The electric and magnetic fields are related to the potentials by the 
relations 

B = V x A .  (30) 
1 ?A E =  - V 4 - - -  
c 2t 

From (29) expressions for LZl, LZ2 and 23 may be written as follows : 

%(U) 
47c 

+-{(V x A , ) .  (V x A"))}. 
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Integration by parts and use of the density conservation law, the zero-order Maxwell 
equations and zero-order Lorentz equation, gives L ,  = 0 as shown by Low (1958). 
Further 

1 
c 2c (U . V ) # ' ) - I u .  ( r  . V ) A ( " - - ( r .  V ) 2 A o  

1 
--D,r . { A ( " + ( u .  V ) A o }  

c 

(32) 
C 

The subscripts 0 denote zero-order quantities and superscripts (1) denote first order 
quantities. The variation of 9 with respect to r yields the Lorentz equation 

(33) 

whilst variations with respect to 4 and A yield the Maxwell equations 

V . E  = -4ne dvf s 
V x B = - ---ne dv uf. 

c l a E  at s 
3. Application of the method 

In this section we examine two examples of wave interactions which have been studied 
previously by conventional methods. The generation of longitudinal plasma waves by 
two high frequency electromagnetic waves in a warm field-free plasma, and the inter- 
action of three electromagnetic waves in a cold magnetized plasma is examined. 

In these examples, only spatial variation is considered, so that the coupled mode 
equations become 

3.1. Generation of longitudinal plasma waves by transverse waves 

Denoting the longitudinal mode by L and the transverse modes by T, the synchronism 
conditions are 

w:-w; = w4 k i - k ;  = ky.  
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From (31) and (32) the lagrangian densities are given by 

y2 = f o ( U )  - ( ~ v ) 2 + e ( r .  v ) p - % .  ( ( Y .  ~ ) ~ ( 1 ) f - f ~ v . ~ ( 1 )  (‘I C C 

( 3 5 )  

where f0(o) is the equilibrium distribution function. The linear equations of motion. 
obtained from T2 are 

which gives, using (10) 

e 
m Y = - ( w - k .  u ) - ~ { E “ ’ + ~ - ’ u x ( ~ x E ‘ ” ) ~ .  (37)  

For the high frequency modes w j  >> k j  . U ( j  = 2, 3) so that D -+ ai&. Dropping the 
superscript (1) from the electric field, (37) gives 

e e 
Y .  = -----E. ( j  = 2, 3) .  (380, b )  .2El  mwf J m ( o ,  - k ,  . U) Y,  = 

For convenience, consider spatial variation in z alone and write 

k = (O,O, k ) .  

The integrated energy flux vector Ps has only the component P i ,  that is 

so that for transverse waves, sinceJ u,fo(v) du = 0 

(39) 

1 ?AJ 2A 
4n dz 2t P Z ( Y , , A , , ~ )  = -- -. 2 

that is 

1 * A  

871 P i ( r j ,  A j ,  x) = - o j k , A j .  A;  ( j  = 2 ,  3) 

on space-time averaging. For the transverse modes, we take E j  = Ej(cos Q j ,  sin Q j ,  0) 
( j  = 2,3) and choose to represent all the wave variables in terms of the individual 
electric field amplitudes E,(n = 1,2, 3). Then 
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Thus from (27b) 

c2kj 
' 8nwj 

A . = - -  (j = 2, 3.). 

For the electrostatic mode, A , = 0 and (39) becomes 

that is 

Substituting for r ,  from (38b) gives 

Assuming that w1 >> k, . U, the integral equals 3k,nou:/w: where no is the number 
density and U, = (IcT/m)'I2. Hence 

where up is the plasma frequency. For the coupling coefficient r,, ignoring the second 
term in (36) which vanishes on integration over velocity space and noting that 

Y = r , + r , + r 3  4 = $1 A = A , + A ,  

the space-time average of 9, is given by 

Integrating over velocity space leads to the coupling coefficient 

iewik, cos(0, -0,) 
r w c  = 32no:w2w,m 

and the coupled-mode equations become 

These results then agree with those of Danilkin (1965). The important feature of this 
calculation has been the ease with which the coupling coefficients have been derived 
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compared with a direct perturbation theory approach using the Vlasov-Maxwell 
equations. 

3.2. Interaction between ordinary and estruordinary \vures in a cold magnetized plusrnu 

As a second example, illustrating the same point consider the interaction of three 
electromagnetic waves propagating at right angles to a uniform magnetic field Bo in a 
cold plasma. In particular let us examine the interaction between two ordinary modes 
(0), and an extraordinary mode (X) (Boyd and Sanderson 1969). In this case the 
synchronism conditions are 

The Lagrangians for a cold plasma can be written down from (35) and (36) by letting 
&(U) = 6 ( v ) .  In this case D + i i t  and 

Let Bo = (O,O, Bo) and k = (0. k .  0). The Euler-Lagrange equations for this case are 

i z r  1 i r  
n-= - e  E ( ” + - , x B ,  

?t2 [ c c t  

From (44) 

e 
r =  

m(w’ - Q2) 

where all superscripts (1) have been dropped for convenience. 
V x E = - (l /c)(aB/dt) ,  (45) and (46) lead to the dispersion relation 

We now consider a general k = ( k x ,  k , ,  0) and for this problem it is convenient to intro- 
duce a new set of Cartesian axes Ox’y ’z ‘  where 9’ = 8 , j ’  = 4 and 2’ = ê  = 4 x 8. All 
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variables in the subsequent calculation are then referred to the common reference frame 
Ox'y'z'. In this frame of reference 

a v x A = +&A,* -2A,,). 

We now split r and A into their wave components so that 

r = r , + r 2 + v ,  

A = A , + A , + A ,  

as in the general theory, Subscripts 1, 3 refer to the ordinary mode and 2 to the extra- 
ordinary mode. The energy flux vector now has one component P,. given by 

which becomes, using (42) 

that is 

From (46), we have for the ordinary modes 

and for the extraordinary mode 

(48) 

(49) 

Since every wave parameter has to be expressed in terms of one parameter, we express 
in terms of E,,, using 

that is 
E,  = - iaE,,~&, + E,,,k, 

with a = iE2x,/E2yj = co,(co: -co;,)/o$ where wUH = ( u : + Q ~ ) ~ ' ~  is the upper hybrid 
frequency. For the ordinary modes Ej = E 8  and for consistency we must write 
E, = E,P where P is a unit vector, that is 

E2 
' - ( I + a )  E - , lj2(-ia&2+k2) 

and substituting (52) into (50) gives 
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We are now in a position to calculate the various coupling coefficients. For the ordinary 
modes, from (48) 

so that 

e2kj  A .  = ~ 

8TCrtOj 

For the extraordinary mode 

( j  = 1,3). 

= 0, E 2 , . E ~ , .  = u2/(1 + a 2 ) E 2 Q  giving 

and 

c2k2a2 
- 8n02(1 +a2) '  

Finally, the coupling coefficient I-,, is derived from 

A -  

e 2r ? A  
Y3 = - - r  -.- 

e ?t 2.Y 

so that 

- e?,, 
Y3 = -((o,k,P, .AT+co3kliT.  CC 

8c 

- 8c mw1rto3 kc 

Hence 

where 

Defining 

the coupled-mode equations become 

( k ,  . V ) E 1  = 

(k, . V)E, = 

( k 3 .  V)E3 = 
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To compare this result with Etievant et a1 (1968) we interchange 1 with 3 and take 
the complex conjugate of the first two equations in (53). Then noting that 

where x -I ns, the results are identical. 

4. Discussion 

The examples in 0 3 illustrate the value of the lagrangian approach in plasma physics 
to which Low first drew attention. The comparative ease with which coupled mode 
equations are obtained means that this method offers a great advantage over the 
standard approach starting from the Vlasov-Maxwell equations. Indeed the saving of 
effort is even more evident in the case of three-wave interactions in a warm, magnetized 
plasma (considered in part 11). The lagrangian approach also makes possible a discussion 
of four-wave interactions in cases where three-plasmon interactions are forbidden by the 
frequency and wavevector conservation relations. One important example in this 
category is the wave-wave interaction involving ion acoustic waves. 

The basic steps in the theory presented in § 2 may be summarized here : 
0) 

(ii) 

(iii) 

starting with a lagrangian density Y(qi, x, U) the qi is separated into a component 
describing the equilibrium state, qb, and one, q', describing the perturbation of 
this state due to waves and their interactions. Y is then expanded in powers of 
the perturbation. 
The perturbation is then split into individual wave components and separate, 
time-dependent wave Lagrangians T ( n ) ,  are constructed. 
Multiple length and time scales are used to describe the wave coupling, the key 
step in the calculation being the application of a space-time averaging to the 
equations governing the energy transfer of each wave participating in the inter- 
action. This leads to equations describing rates of transfer of action for each 
individual wave in terms of space-time averaged generic wave energy densities, 
X2(q; , x, U), fluxes @;(q;, x, U) and coupling energy Y3(q; + q i  +vi, x, U). 

(iv) Use of the linear equations of motion, derived from Y2 allows each 16 to be 
expressed in terms of a single wave parameter, and the above quantities may 
then be written in terms of this parameter. 

(v) Coupled-mode equations follow with coupling coefficients given directly in 
terms of averaged energy densities and fluxes. 

Two key requirements have to be met before the lagrangian approach may be used 
in dealing with the class of weakly nonlinear problems described. The equations of 
motion must be derivable from a variational principle. Secondly, in describing the 
evolution of the plasma one must be able to assign multiple length and time scales so 
that space--time averaging over distances and periods long compared with kn- ', o; ' may 
be carried out. 

In part I1 the method is applied to describe wave interactions in warm, magnetized 
plasmas (Boyd and Turner 197 l), together with the nonlinear interaction between 
positive and negative energy waves leading, under certain circumstances, to explosive 
instabilities. 
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